Skip to main content

graph traversals

Graphs are one of the many data structures which are actually mathematical structures. A graph is a triplet of E,V,G; where E represents the set of edges, V represents the set of vertices, G represents a function linking the corresponding vertices to its edges. In this post, I will talk about graph traversals. But before that, lets first talk about how to represent a graph and then, we will talk about traversing a graph.

Graph representation:

readymade codes are:
#include <stdio.h>
#include <stdlib.h>
#define SIZE 40

struct queue {
    int items[SIZE];
    int front;
    int rear;
};

struct queue* createQueue();
void enqueue(struct queue* q, int);
int dequeue(struct queue* q);
void display(struct queue* q);
int isEmpty(struct queue* q);
void printQueue(struct queue* q);

struct node
{
    int vertex;
    struct node* next;
};

struct node* createNode(int);

struct Graph
{
    int numVertices;
    struct node** adjLists;
    int* visited;
};

struct Graph* createGraph(int vertices);
void addEdge(struct Graph* graph, int src, int dest);
void printGraph(struct Graph* graph);
void bfs(struct Graph* graph, int startVertex);

int main()
{
    struct Graph* graph = createGraph(6);
    addEdge(graph, 0, 1);
    addEdge(graph, 0, 2);
    addEdge(graph, 1, 2);
    addEdge(graph, 1, 4);
    addEdge(graph, 1, 3);
    addEdge(graph, 2, 4);
    addEdge(graph, 3, 4);
 
    bfs(graph, 0);
 
    return 0;
}

void bfs(struct Graph* graph, int startVertex) {

    struct queue* q = createQueue();
    
    graph->visited[startVertex] = 1;
    enqueue(q, startVertex);
    
    while(!isEmpty(q)){
        printQueue(q);
        int currentVertex = dequeue(q);
        printf("Visited %d\n", currentVertex);
    
       struct node* temp = graph->adjLists[currentVertex];
    
       while(temp) {
            int adjVertex = temp->vertex;

            if(graph->visited[adjVertex] == 0){
                graph->visited[adjVertex] = 1;
                enqueue(q, adjVertex);
            }
            temp = temp->next;
       }
    }
}

 
struct node* createNode(int v)
{
    struct node* newNode = malloc(sizeof(struct node));
    newNode->vertex = v;
    newNode->next = NULL;
    return newNode;
}
 

struct Graph* createGraph(int vertices)
{
    struct Graph* graph = malloc(sizeof(struct Graph));
    graph->numVertices = vertices;
 
    graph->adjLists = malloc(vertices * sizeof(struct node*));
    graph->visited = malloc(vertices * sizeof(int));
    
 
    int i;
    for (i = 0; i < vertices; i++) {
        graph->adjLists[i] = NULL;
        graph->visited[i] = 0;
    }
 
    return graph;
}
 
void addEdge(struct Graph* graph, int src, int dest)
{
    // Add edge from src to dest
    struct node* newNode = createNode(dest);
    newNode->next = graph->adjLists[src];
    graph->adjLists[src] = newNode;
 
    // Add edge from dest to src
    newNode = createNode(src);
    newNode->next = graph->adjLists[dest];
    graph->adjLists[dest] = newNode;
}

struct queue* createQueue() {
    struct queue* q = malloc(sizeof(struct queue));
    q->front = -1;
    q->rear = -1;
    return q;
}


int isEmpty(struct queue* q) {
    if(q->rear == -1) 
        return 1;
    else 
        return 0;
}

void enqueue(struct queue* q, int value){
    if(q->rear == SIZE-1)
        printf("\nQueue is Full!!");
    else {
        if(q->front == -1)
            q->front = 0;
        q->rear++;
        q->items[q->rear] = value;
    }
}

int dequeue(struct queue* q){
    int item;
    if(isEmpty(q)){
        printf("Queue is empty");
        item = -1;
    }
    else{
        item = q->items[q->front];
        q->front++;
        if(q->front > q->rear){
            printf("Resetting queue");
            q->front = q->rear = -1;
        }
    }
    return item;
}

void printQueue(struct queue *q) {
    int i = q->front;

    if(isEmpty(q)) {
        printf("Queue is empty");
    } else {
        printf("\nQueue contains \n");
        for(i = q->front; i < q->rear + 1; i++) {
                printf("%d ", q->items[i]);
        }
    }    
}
 Caution: these codes are not written by the site owner. These are 
compiled to provide a full set of codes for data structure on this site.
 
 
 
 
 

Comments

Popular posts from this blog

Mastering SQL for Data Science: Top SQL Interview Questions by Experience Level

Introduction: SQL (Structured Query Language) is a cornerstone of data manipulation and querying in data science. SQL technical rounds are designed to assess a candidate’s ability to work with databases, retrieve, and manipulate data efficiently. This guide provides a comprehensive list of SQL interview questions segmented by experience level—beginner, intermediate, and experienced. For each level, you'll find key questions designed to evaluate the candidate’s proficiency in SQL and their ability to solve data-related problems. The difficulty increases as the experience level rises, and the final section will guide you on how to prepare effectively for these rounds. Beginner (0-2 Years of Experience) At this stage, candidates are expected to know the basics of SQL, common commands, and elementary data manipulation. What is SQL? Explain its importance in data science. Hint: Think about querying, relational databases, and data manipulation. What is the difference between WHERE ...

Spacy errors and their solutions

 Introduction: There are a bunch of errors in spacy, which never makes sense until you get to the depth of it. In this post, we will analyze the attribute error E046 and why it occurs. (1) AttributeError: [E046] Can't retrieve unregistered extension attribute 'tag_name'. Did you forget to call the set_extension method? Let's first understand what the error means on superficial level. There is a tag_name extension in your code. i.e. from a doc object, probably you are calling doc._.tag_name. But spacy suggests to you that probably you forgot to call the set_extension method. So what to do from here? The problem in hand is that your extension is not created where it should have been created. Now in general this means that your pipeline is incorrect at some level.  So how should you solve it? Look into the pipeline of your spacy language object. Chances are that the pipeline component which creates the extension is not included in the pipeline. To check the pipe eleme...

fundamentals of LLM: A story from history of GPTs to the future

Introduction: So there has been a lot of developments in LLM and I have not gone through any of it. In the coming few parts, I will talk about LLM and its related eco-system that has developed and will try to reach to the cutting or more like bleeding edge. Lets go through the main concepts first. What is LLM? LLM[1] refers to large language models; that refer to mainly deep learning based big transformer models that can perform the natural language understanding and natural language generation tasks much better than the previous versions of the models generated in NLP history. LLM models are generally quite big, in terms of 10-100GBs and they can't fit in even in one machine's ram. So, most LLMs are inferenced using bigger GPU cluster systems and are quite computationally exhaustive. What was the first true LLM? The BERTs Transformers were invented on 2017 by vaswani et al in their revolutionary paper called "attention is all you need". After that we had the BER...